
softinex, inlib, exlib, ourex, ioda, g4view, g4exa, wall

Guy Barrand

LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France

E-mail: barrand@lal.in2p3.fr

Abstract. Softinex names a software environment targeted to do data analysis and
visualization. It covers the C++ inlib and exlib ”header only” libraries that permit, through
GL-ES and a maximum of common code, to build applications deliverable on the Apple
AppStore (iOS), GooglePlay (Android), traditional laptops/desktops under MacOSX, Linux
and Windows, but also deliverable as a web service able to display in various web browsers
compatible with WebGL. In this paper we explain the coarse graining ideas, choices, code
organization of softinex along a short presentation of some applications done so far (ioda,
g4view, etc...). At end we present the ”wall” programs that permit to visualize HEP data
(plots, geometries, events) on a large display surface done with an assembly of screens driven
by a set of computers. The web portal for softinex is http://softinex.lal.in2p3.fr.

1. 2010
The year 2010 had been the year of the tablet breakthrough but also of the availability of ”stores”
for them that permit to install an application with fingertips. At LAL, it had been also the
year that Apple, in the context of an ARTS project, provided us with a set of four computers
and eight screens in order to explore ”wall of screens” techniques. Being involved for long in
graphics for science we can’t ignore these three facts. We took these technological revolutions as
an opportunity to reconsider strongly the way we did graphics up so far and took the occasion
to build something new. Before 2010 we relied strongly on third party software as coin3d for
the graphics and gtk, Qt, etc... for the user interface. On iOS and Android only GL-ES is here,
and not the ”full classical OpenGL”, then we can’t stay with coin3d anymore. We had decided
to create our own scene graph scene manager based on GL-ES and on our strong knowledge of
the internal of OpenInventor (and coin3d). For the GUI, we had decided to attempt something
original: do it also with GL-ES and the same scene graph manager than the one used to represent
data. Doing the GUI with GL is not so new, a lot of people, especially around gaming, do that.
It simplifies a lot of things, especially when porting on new devices. Moreover the fact to build
the GUI with the same scene graph manager than the ”graphics itself” permits to convey much
less code for a whole application. (GUI toolkit such as Qt, gtk duplicates the logic and code
found also in high level graphics library as Inventor). The way to build applications promoted
by Apple and Google for their devices is too different in order for one man alone to follow them
easily. The languages are different (java for Google/Android, Objective-C for Apple/iOS), the
build systems are different (Eclipse or ”Android SDK make” for Google and Xcode for Apple)
and obviously the GUI toolkits are different. But it appears that both environments permit to
do C++ and GL-ES, and it is something that ”one man with academic resources” can use to
build applications for both kind of devices.



2. inlib/sg
The core of our approach is the ”inlib/sg” which is a scene graph manager. It is used both
for building representations of data but also to handle the GUI of our applications. In a GUI
toolkit it is needed also to have something to say ”I want a button here, a menu here, a list
here, etc...” and this is nothing more than building a scene. And using a scene graph logic looks
adapted for that. What singularizes a GUI is the fact to have to deposit callbacks on elements
of the scene (typically push buttons), but this is not strange to a scene manager logic used to
visualize data since we need that here too to create animations. Then someone can definitely
arrange a scene graph manager to create push buttons beside visualizing scientific data. The
inlib/sg handles nodes (inlib::sg::node) that can be gathered in container nodes as group or
separator (same logic as Inventor [1]). Some nodes permit to deposit points, lines, triangles (as
inlib::sg::vertices) and some permit to specify transformations (as inlib::sg::matrix). An action
(inlib::sg::action), similar to the SoAction of Inventor, can be defined to ”traverse a scene graph”.
A typical action is the render action that permits to do the GL-ES of a scene graph.

3. inlib, header only code
One difficulty is the way to build the applications for the various systems. Today there is no
universal IDE, building system that permits to build straight a C++ application for Android, iOS
and the various desktop/laptop systems (UNIX, Windows based) and this up to the deposition
on the stores. If relying to an environment based on numerous libs, we would have to pass our
time in various IDEs (Xcode, Eclipse) to declare these libs and what must go in them; a pain.
To avoid that we do a maximum of ”header only” code. It permits to bypass this problem. A
penalty is obviously the compilation time of the whole application, but experience shows that
building, for example, by using clang in debug mode on a ”pretty good machine” is bearable.
The app building in optimization mode is more lengthy but we do that in general once when
delivering the application for the stores. (This ”header only” approach is not new, good part of
the STL and the boost library is done like that).

4. inlib and data analysis, g4tools
The inlib contains histogram classes. Our histograms are not implicitly managed by using
the singleton pattern and/or global pointers. In fact there is no writeable static data in inlib
and exlib. Beside being not thread safe, this kind of pattern breaks OO encapsulation and
complicates the global understanding/readability of the code, especially when dealing with big
software. The inlib contains code for fitting (pure header version of MINUIT), but also pure
header code to write histograms and ntuples at the ROOT file format. There is a lot of code
for plotting (inlib::sg::plotter class), and as the inlib contains also the render zb action able to
render a scene by using an inlib z-buffer, you can also do batch plotting in 3D (and 2D) without
the need to tie to any GL library. Various examples can be found under the inlib/examples/cpp
directory. (In particular the lego zb.cpp example for 3D batch plotting). Part of the inlib is now
used, within the ”g4tools” namespace, in the Geant4 examples to create and fill histograms and
ntuples and export them at various file formats (AIDA-XML, ROOT, CSV for ntuple).

5. exlib
Another painful problem in software is the handling of external libraries and the code that attach
to them. We have chosen to put this kind of code under a separate namespace and packaging
: the exlib. Here can be found pure header code that does something with expat, jpeg, png,
cfitsio, freetype, etc... The general rule is that the code in inlib is only on the STL and ANSI
C libraries and that someone is expected to have to deal with some external software if having
to use something from the exlib. Obviously the exlib depends on the inlib and then the STL
and ANSI C libraries. Under exlib/examples/cpp, or exlib/apps there are various examples as



the plotter X11.cpp that demonstrates inlib histogram plotting by using X11. Contrary to an
inlib example, a build script is rather mandatory since you have to pass all the ”-I” and ”-L”
flags in order to use some external packages. Our build scripts are done in bash and we have
tried to keep them readable. A build script to build an exlib example or an application uses
a set of ”use [external]” scripts found under exlib/mgr, each dedicated to set flags to attach
a given external package (for example use X11 for X11). If having problem to compile one of
the example because of ”something not found” for a given external package, it is sufficient to
check/change the flags found in the related ”use [external]” script. (For example, plotter X11
needs exlib/mgr/use [freetype,GL,GLX,X11] and the inlib/mgr/use cpp to set the compiler).

6. ourex, master the externals, avoid ”code inflation”
Beside the STL, it is hard to build a large application without some code not written at home.
We call these sets of code ”external packages”. In general we are interested in an external
package because we need a piece of code with ”high added value” on a given problem, for
example reading a jpeg file, parsing an XML file, decompressing a file at gzip format, etc... Any
problem that would need us a lot of time to rewrite the algorithms because these algorithms
embed a strong expertise on the problem at hand. In softinex we try to master our externals.
Under the ourex directory, we keep a copy of the externals we need, and we give priority to
the usage of these instead of using the ones coming with the system or installable by other way
(apt-get on some Linuxes, Macport on a Mac, etc...). It permits first to have the same overall
code on all platforms and then be sure to have the same behavior of the applications on all
platforms. Moreover, since we arrange to build the ourex externals with the same bash build
system than exlib examples and applications, and without using any ”config” script, it permits
to have in general a straightforward ”build and install” of a given application.

7. Software Least Action Principle
The softinex icon represents the Maupertuis, Fermat or Least Action principle. The least action
principle is what guided us in our choices for doing software to do physics: to build an application
from nothing, we go straight at the essential by choosing simplest solutions and tools and then
avoid all what is not needed or unnecessarily complicated. The least action principle does not
mean that we do nothing! but that we do things by minimizing the number of lines of code
involved, knowing that we have various constraints to fulfill, as the portability and the efficiency
(obviously). It does not mean also that we attempt to rewrite everything. We rely on a lot of
”externals”, but we choose them carefully by checking that they address properly one particular
problem at a time in the same spirit.

Following our ”software least action principle” (the SLAP!) we have adopted C++ as a
programming language. Operating systems being done in C, it is natural to ”stay close” to
C, it helps a lot. But experience shows that for big software we need object orientation.
Encapsulation, namespace, class, inheritance and virtuality, if used properly, help a lot to
organize. Due to its large availability we have adopted C++, but we are definitely not ”C++
extremists” and avoid to jump to too ”compact code” that poison the readability. As much as
possible we try to code ”header only”; experience shows that it simplifies a lot... everything.
We then avoid languages as java that induces to have to handle a third party virtual machine
between the application and the machine; it complicates. In the same spirit we target the native
processors and native operating systems and don’t have as a primary target virtual machines;
also, it complicates (but we use anyway virtual machines to do some port and test the code).
In the same spirit we use bash shell scripts to build applications: make, GNUmake, cmake,
scons, ant, maeven, Eclipse, Xcode, VisualStudio, etc..., all these ”tools” do not really permit
to ”pass at once” everywhere, and at some point finish to be more in the way if seeking the
portability. In the same spirit we also get rid of, for the GUI, various things as Xt/Motif, gtk,



win32, Qt, Cocoa, UIKit, etc... (despite that we have a strong experience with all these), we
prefer a ”unified graphics approach” through GL-ES and a common scene graph manager; it
simplifies a lot!

Someone must not see the upper point of view as ”against everything” but more as ”tired
of a lot of things”! A lot of things that finish to be in the way when seeking to do physics. As
said, we have adopted a lot of ”externals” (jpeg, png, zip, zlib, expat, freetype, graphviz, cfitsio,
hdf5, etc...). For them, we bring their code and do not rely on the ones that may be found
on a system. It simplifies a lot an installation ”from scratch”, and permits also to have some
guaranties that the behavior of the application is the same on all machines.

What is sure is that with our SLAP, right now, we have compact applications that run
natively, and then efficiently, on a broader choice of machines that would have been permitted
with other ”fundamental guiding choices”, and be sure that we are very very happy with that.

We do not hide that our choices came also by having observed the ”inflation of code and
complexity” around software done for the LHC experiments. For example the LHCb Panoramix
event display can be built now only for one given platform : clone of Linux CERN lxplus. Even
a so common UNIX as MacOSX is out of reach, and iOS and Android are just unthinkable for it.
Now this software weights more than 30 Gigabytes of binaries; this includes a full g++ compiler,
some C++ interpreter, a full version of python, two not compatible data frameworks (Gaudi [3]
and ROOT [4]), Qt and coin3d libraries, etc, etc, etc... Put all together it is three times more
than any operating system! It is hard to believe that it is the best we can do to visualize at end
a B decay!

8. Applications done with softinex
8.1. ioda

ioda should be read ”IO-DA”, for Input/Output and for Data Analysis. It is an application that
permits to read files at various formats as FITS used in astronomy, DICOM used in medical,
AIDA and ROOT used in HEP, JPG and PNG format to store images and FOG developed at
CEA/Saclay (France) to describe the LHC/ATLAS geometry. ioda permits to browse these files
and visualize some of their data. For AIDA and ROOT files, the histograms 1D, 2D, profiles
1D, 2D can be plotted. For JPG, PNG files, the image is visualized. For FITS files, the ”HDUs”
can be listed and their keys can be seen. If the HDU is an IMAGE HDU type, ioda attempts
to visualize it. If the HDU is a BINARY TBL, ioda shows a description of the columns (name,
type) and proposes to histogram and plot a selected column. Files at the FOG CEA/Saclay
format permit to visualize LHC/ATLAS sub detectors. ioda is available on the Apple AppStore
since the 5th January 2011. It is an historical date for us. It is probably the first HEP application
that can be delivered so easily in this way. Some kind of giant step for us. ioda is available on
GooglePlay and the ioda-release.apk is also available from the download area of the web pages.

8.2. g4view, g4exa

g4view is an application that permits to read geometry files at the Geant4 [2] GDML format
describing particle physics detectors. It permits to visualize the geometry of a loaded detector.
It can read also ”scenarios” files that permit to choose the volumes seen from GDML, strongly
customize their graphical attributes as the coloring or the wire frame/solid rendering. A scenario
permits also to customize the ”particle gun” by choosing, for example, the primary particle type
and its momentum. A scenario permits also to setup the coloring of trajectories when shooting
events. From the main menu, you can then start a ”particle through matter” simulation of the
detector by using the Geant4 toolkit. g4view can also read and execute g4mac files containing
Geant4 scripting commands. Under the examples menu, there are predefined typical setups
as a piece of an electromagnetic calorimeter intended to be used for particle physics detector
teaching. The code is based over the Geant4 core and the inlib/exlib code. g4exa is a more



simple Geant4 application done with the code of the Geant4 A01 example which is intended to
be a template application for people wanting to use the softinex tools to write their own Geant4
application to run on Android and iOS devices.

8.3. pmx,agora

These are ”concept apps” of smartphone/tablet like event displays for the LHCb and ATLAS
experiments. They are more a proof of concept than applications ready to do physics. Anyway
it can give to someone novice in high energy physics (HEP) a glance at what a HEP detector
looks like.

8.4. wall

The ”wall” package contains code to steer a set (a ”wall”) of screens with multiple computers.
See the web pages for photos and videos. Our today (2013) setup is made of four Macs driving
each three screens (then twelve screens) and an iMac used to pilot the system, all these machines
being connected on a fast private network. There is one process per screen (then an overall of
twelve and then three per machine). There is a master process on the front-end machine (the
iMac). Each screen-process receives from the master-process a same scene graph containing a
camera node, some shape nodes, image nodes and matrix nodes to position objects in the scene.
But the camera node (an inlib::sg::lrbt) of each screen-process is tuned to see only a twelfth
of the projection of the scene. It is the ”tiled rendering” way of doing. The master-process
can send camera displacement and zoom orders to the screen-processes in a consistent way,
which leads to nice animations. For some scenes, we can upload at once triangles, segments,
points in the GPUs of the screen-machines, and this leads to very fluent animations, even on
big geometries. This setup is commonly used at LAL to do outreach : HEP slideshow, showing
interaction of common particles (electron, proton, muon) in a simple calorimeter (in fact done
with the Geant4 novice/N03 example code), showing ATLAS and LHCb geometries, showing
astronomical pictures (in fits files), showing DICOM medical files. In May 2013 we made a
connection with the LHCb/Panoramix event display, which permits us to show now ”true recent
physics”. We made the connection with apps running on tablets. Some applications as ioda,
g4view running on a tablet can send scene graphs to the wall. This kind of setup is still a
research and development platform, but what had been done up so far convinced us that it has
clearly a huge potential for helping doing physics.

Reference
[1] Josie Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor,

Release 2, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA 1993 ISBN:0201624958.
[2] S.Agostinelli et al.,GEANT4-a simulation toolkit, Nucl. Instr. Meth. A, vol. 506, no. 3, pp. 250-303, 2003.
[3] Barrand G. et al., GAUDI - A software architecture and framework for building LHCb data processing

applications, (longpaper) Proc. of CHEP 2000.
[4] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data Analysis Framework, Proceedings

AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.


